Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732673

RESUMEN

Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits complex behaviors in saline environments. This study explores Nafion membrane's IR spectra during soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the principles of Fick's second law, diffusion coefficients for these processes are derived via exponential approximation. By harnessing machine learning (ML) techniques, including the optimization of neural network hyperparameters via a genetic algorithm (GA) and leveraging various regressors, we effectively pinpointed the optimal model for predicting diffusion coefficients. Notably, for the prediction of soaking coefficients, our model is composed of layers with 64, 64, 32, and 16 neurons, employing ReLU, ELU, sigmoid, and ELU activation functions, respectively. Conversely, for drying coefficients, our model features two hidden layers with 16 and 12 neurons, utilizing sigmoid and ELU activation functions, respectively.

2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612671

RESUMEN

This paper offers a thorough investigation of hyperparameter tuning for neural network architectures using datasets encompassing various combinations of Methylene Blue (MB) Reduction by Ascorbic Acid (AA) reactions with different solvents and concentrations. The aim is to predict coefficients of decay plots for MB absorbance, shedding light on the complex dynamics of chemical reactions. Our findings reveal that the optimal model, determined through our investigation, consists of five hidden layers, each with sixteen neurons and employing the Swish activation function. This model yields an NMSE of 0.05, 0.03, and 0.04 for predicting the coefficients A, B, and C, respectively, in the exponential decay equation A + B · e-x/C. These findings contribute to the realm of drug design based on machine learning, providing valuable insights into optimizing chemical reaction predictions.


Asunto(s)
Ácido Ascórbico , Azul de Metileno , Diseño de Fármacos , Aprendizaje Automático , Redes Neurales de la Computación
3.
Polymers (Basel) ; 16(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38543343

RESUMEN

This study delves into the mechanical characteristics of polyamide PA2200 components crafted using selective laser sintering (SLS) technology. Our primary objective is to analyze the tensile behavior of the components printed at various orientations, showing its response to diverse loading conditions. Finite element method (FEM) modeling was employed to analyze the tensile behavior of these details. The time determined for breaking the detail is 9 s. In addition we forecast key properties, such as tensile behavior and strength, using machine learning (ML) techniques, and the best models are for predicting relative elongation are KNeighborsRegressor and SVR.

4.
Polymers (Basel) ; 16(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38201778

RESUMEN

This article investigates the utility of machine learning (ML) methods for predicting and analyzing the diverse physical characteristics of polymers. Leveraging a rich dataset of polymers' characteristics, the study encompasses an extensive range of polymer properties, spanning compressive and tensile strength to thermal and electrical behaviors. Using various regression methods like Ensemble, Tree-based, Regularization, and Distance-based, the research undergoes thorough evaluation using the most common quality metrics. As a result of a series of experimental studies on the selection of effective model parameters, those that provide a high-quality solution to the stated problem were found. The best results were achieved by Random Forest with the highest R2 scores of 0.71, 0.73, and 0.88 for glass transition, thermal decomposition, and melting temperatures, respectively. The outcomes are intricately compared, providing valuable insights into the efficiency of distinct ML approaches in predicting polymer properties. Unknown values for each characteristic were predicted, and a method validation was performed by training on the predicted values, comparing the results with the specified variance values of each characteristic. The research not only advances our comprehension of polymer physics but also contributes to informed model selection and optimization for materials science applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...